Learning State Representations for Query Optimization with Deep Reinforcement Learning
نویسندگان
چکیده
Deep reinforcement learning is quickly changing the field of artificial intelligence. These models are able to capture a high level understanding of their environment, enabling them to learn difficult dynamic tasks in a variety of domains. In the database field, query optimization remains a difficult problem. Our goal in this work is to explore the capabilities of deep reinforcement learning in the context of query optimization. At each state, we build queries incrementally and encode properties of subqueries through a learned representation. The challenge here lies in the formation of the state transition function, which defines how the current subquery state combines with the next query operation (action) to yield the next state. As a first step in this direction, we focus the state representation problem and the formation of the state transition function. We describe our approach and show preliminary results. We further discuss how we can use the state representation to improve query optimization using reinforcement learning.
منابع مشابه
End-to-End Optimization of Task-Oriented Dialogue Model with Deep Reinforcement Learning
In this paper, we present a neural network based task-oriented dialogue system that can be optimized end-to-end with deep reinforcement learning (RL). The system is able to track dialogue state, interface with knowledge bases, and incorporate query results into agent’s responses to successfully complete task-oriented dialogues. dialogue policy learning is conducted with a hybrid supervised and ...
متن کاملOperation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملSeq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning
Relational databases store a significant amount of the worlds data. However, accessing this data currently requires users to understand a query language such as SQL. We propose Seq2SQL, a deep neural network for translating natural language questions to corresponding SQL queries. Our model uses rewards from inthe-loop query execution over the database to learn a policy to generate the query, wh...
متن کاملRRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features
Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...
متن کاملWeb pages ranking algorithm based on reinforcement learning and user feedback
The main challenge of a search engine is ranking web documents to provide the best response to a user`s query. Despite the huge number of the extracted results for user`s query, only a small number of the first results are examined by users; therefore, the insertion of the related results in the first ranks is of great importance. In this paper, a ranking algorithm based on the reinforcement le...
متن کامل